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Abstract

This paper presents preliminary results of laboratory experiments designed to study the effects of specific volume
variation as regards the basic physical mechanisms governing weakly compressible flows. Turbulent free convection
developing in a large vertical open tunnel was investigated. Results were analyzed in the framework of an original
formulation of the Navier-Stokes equations in which no simplifying assumptions regarding density variations were
made, and where the terms representing specific volume fluctuation effects could be isolated and examined separately.
Non-isovolume mechanisms were found to play a noticeable role in the transport equations of internal and turbulent
energy, and had to be accounted for in budget analysis. In contrast, the analysis showed that the form of the transport
equation of mean momentum obtained and used classically when the Boussinesq approximation applies could still be
used in the present case, consistently with earlier observations in the atmosphere. Results put forward that the role
played by non-isovolume mechanisms depends strongly on the mean velocity divergence and, with respect to the
temperature field, on the dissipation rate of the temperature variance. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Considerations will here be restricted to fluids heated
from below for which buoyancy effects form the only
source of motion. The emphasis will be put on large-
sized flows whose mean temperature differs only slightly
from ambient temperature. This will be referred to as
turbulent free convection.

Although turbulent free convection is a rather com-
mon regime for flows in the atmosphere as well as in
various industrial processes, our understanding of the
dynamics of buoyant turbulent motion still remains in-
complete. One of the open questions in this field is the
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role of density variations as regards the basic physical
mechanisms governing turbulent free convection.

Turbulent free convection continues to be analyzed
and described most often using a quasi-incompressible
formulation of the Navier—-Stokes equations, as can be
seen from the different contributions in [1]. Further-
more, numerical simulations often use models and ap-
proximations that have been established from
experiments whose analysis itself was based on these
same models and approximations, and where the non-
measurable terms were deduced by using already sim-
plified closures. Results from such experiments are to
some extent necessarily biased and, as a general rule,
such an approach cannot provide an understanding of
terms that have been ignored in the formulation of the
equations used for analysis. If one has need for closures
for a model of convection, then one needs to obtain this
information from studies of convection with as few hy-
potheses as possible for data analysis.

Therefore, laboratory experiments were conducted in a
large open vertical tunnel with air as working fluid so as to
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Nomenclature

A generalized effective density of volume
source strength in the balance equation for
b4

C, specific heat of air at constant volume

gravitational acceleration

generalized effective density of surface
source strength (molecular flux) in the
balance equation for ¥

fluctuating part of J

pressure

pressure fluctuation

conductive heat flux

fluctuating part of Q

gas constant for air

ad radiation

ad’ fluctuating part of Rad

time

temperature

specific volume of air

velocity vector

velocity components

fluctuating part of U

fluctuating velocity components

convection velocity of temperature scales

co-ordinates (the vertical co-ordinate x

designates also the mean flow direction)
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Greek symbols

o thermal diffusivity

Y ratio of air specific heats (= C,/C,)

& dissipation rate of turbulent kinetic energy
& dissipation rate of the temperature variance

[0 dissipation function

K turbulent kinetic energy

I, generalized deviation term representing
volume fluctuation effects of second order

I, IT,-term in the transport equation of
internal energy

i, OITy-term in the transport equation of
mean momentum

v kinematic viscosity

2,2 stress tensor

a,0; fluctuating part of the stress tensor

0 temperature fluctuation

T, Ty rate-of-strain tensor (=deviatoric stress
tensor)

0 fluctuating part of U

14 intensive quantity equal to the amount of

any extensive fluid property (e.g., mass,
momentum, Kinetic energy, etc.) per unit
mass of fluid; here ¥ may be any scalar-,
vector- or tensor-valued function of time
and position

V4 fluctuating part of ¥
Superscripts

— time and surface average
= tensor

Subscripts

a ambient fluid

k k component

Other notations

D/Dt¢ time derivative following mean motion
(=0/at+U-V)

projected component along the vertical axis

le

investigate density variation effects in unsteady turbulent
free convection. The temperature difference between the
flow and the ambient fluid outside the tunnel was ap-
proximately 10 K. This arrangement corresponded to the
typical case of application of the Boussinesq or anelastic
approximations. However, the Rayleigh number charac-
teristic of this flow configuration was of the order of 10"
and thus was typical of flows for which, like strongly heated
jets, compressibility effects have to be fully accounted forin
the transport equations.

Results were analyzed using the alternative formu-
lation of the Navier-Stokes equations proposed by Rey
[2], for weakly compressible flows. No a priori simpli-
fying assumptions were made in the equations as regards
dilatation mechanisms.

Part of the results regarding the conservation of
mean momentum, internal energy and the temperature
and velocity variances are presented and discussed in
this paper. Much more information was gained out of

this work through the examination of the balance of the
turbulent heat flux transport equation, and through
spectral analysis. This provided an opportunity for dis-
cussions regarding the mass-weighted averaging ap-
proach of Favre [3]. Relevant findings have been fully
reported in [4]. The present paper is rather intended to
communicate about the spirit and the potential benefits
of the approach taken throughout this work, and about
the questions this study raised.

2. Description of the experimental apparatus
2.1. Set-up and working principle

The experimental facility designed for this study was
a 10-m high vertical open tunnel with a square cross-

section of constant dimensions 3 m x 3 m (Fig. 1). The
flow was generated using an electrically heated grid
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consisting of a perpendicular arrangement of two sets of
29 resistive rods 15 mm in diameter. The grid mesh size
was 10 cm. The flow generated in this manner was so
that buoyancy was the sole source of motion, and pro-
duction of turbulent kinetic energy by mean shear was
negligible compared to production by buoyancy. During
experiments, all the resistive elements were switched to
full power so as to ensure constant and steady heating
conditions. This corresponded to a total electrical power
supply of 80 kW.

Simultaneous measurements of fluctuating velocity
and temperature were performed by scanning multi-wire
probes within horizontal planes at various test sections
located 2, 3, 4, 5 and 6 m downstream of the heated grid.
Thus, measurements were taken in a region where the
flow could be considered fully developed, and where the
turbulence could be reasonably assumed to be homo-
geneous and isotropic. More details on measurement
procedures are given in [4].

2.2. Flow special peculiarities

As measurement sessions lasted about 5 h, our ability
to achieve experiments with ambient temperature vari-
ations at a steady rate was severely limited. The con-
tinual heat discharge into the laboratory hall caused an
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increase in the ambient mean temperature at a rate de-
pendent on the heat supply and the rate of heat ex-
change between the building and outside. Moreover,
building losses were influenced by the diurnal meteoro-
logical cycle. The mean flow structure inside the vertical
tunnel in turn was affected by the ambient temperature
changes through re-entrainment of ambient air at the
tunnel entry section and through altered blockage effect
at the exit section.

Therefore, a monitoring system was set up providing
on-line information about the ambient and flow tem-
perature stratification during experiments to allow for
the temporal evolution of mean temperatures in the data
analysis. The apparatus consisted of 23 thermocouples.
Of those, 15 were hung in the laboratory hall along 3
ropes stretched vertically between the building floor and
the ceiling, at 3-10-m distance from the convection
tower. The 7 remaining thermocouples were fixed at 2, 3,
4,5, 6, 8 and 10 m above the grid plane along a fourth
rope located inside the tunnel.

Mass experiments were carried out to estimate con-
vection velocities of the temperature and kinematic
structures because of the breakdown of Taylor’s
hypothesis regarding temperature scales. Convection
velocities were determined from space-time correlation
analysis. Longitudinal space—time correlations could not
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Fig. 1. Schematic view of the experimental apparatus.
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be measured directly because of wake interference be-
tween the probes. Therefore, these were inferred from
measurements of transversal and angular space-time
correlations. The convection velocity U, was found to be
constant and equal to 1.5U within the investigated flow
region. That of the kinematic structures turned out to be
equal to U. This had to be accounted for in the calcu-
lation of ¢ and ¢, involving the determination of the
Taylor’s micro-scales from the relevant dissipation
spectra. Note that the ratio Uy/U could be as high as 5
immediately downstream of the grids. Hence, for
Uy = 5U, the dissipation rate of the temperature vari-
ance would have been overestimated by a factor of 25 if
in the calculation one had used U instead of the ap-
propriate convection velocity.

3. An alternative set of equations
3.1. Philosophy

For compressible fluids, it seems consistent to use a
mass formulation. Therefore, experimental results were
analyzed in the framework of a new formulation of the
Navier—Stokes equations derived from a local balance
analysis for elementary mass of fluid. This is the essence
of the approach proposed by Rey in [2] that is briefly
outlined in the following. Here the so-called ‘volume
formulation’, which consists in deriving all necessary
equations from local balance analysis for elementary
volume of fluid will be referred to as the ‘classical for-
mulation’ or ‘classical approach’.

For any arbitrary extensive quantity associated with
the fluid (e.g., mass, momentum, kinetic energy, etc.),
whose amount per unit mass of fluid is denoted by ¥, we
have

S/ Y’dmz/Ader/(Jﬁ)ds,
dr Jy M F

Here dm denotes that integration is to be performed over
the control mass M of fluid. By F, we denote the closed
bounding surface of M. The symbols 4 and J represent
the effective densities per unit mass and per unit surface
area of source/sink strength, respectively. By inter-
changing differentiation and integration in the left-hand
side of the equation above since M is constant, and by
using Green’s transformation in the right-hand side, it
becomes

/M (%,7/17 Udiv(J)) dm = 0.

Note that, in this approach, we are considering inte-
gration over a material body that is not function of time
by definition, while the classical approach would have
looked at the volume D containing M, with D a function

of time when specific volume (or density alternatively) is
variable.

But the last equation is true for any material body of
or any portion of material body. Therefore, the inte-
grand itself must be identically zero so that

dvy
dr
Subsequently, by splitting up U, U, ¥, and J into their
mean and centered fluctuating components with respect
to Reynolds statistical decomposition we obtain suc-
cessively:

dy = —
T (U + i) grad(V + )

—A4—-Udiv(J) — 9 div(J +j) = 0,

— A4 - Udiv(J) =0.

dd—lf + U grad(P) + i grad(P + )

—A4—-Udiv(J) =9 div(J +/) =0,

(L—lf + U grad(P) + @ grad(P) + i grad()

+y div(it) — 4 — U div(J)
=d9div(J) +9div(j) + ¥ div(d),

% + 7 grad(P) + div(yii) — 4 — U div(J)

=9 div(J) + 9 div(j) + ¢ div() . (1)
———————
1y
Eq. (1) is the generalized formulation of the local bal-

ance equation for V. Interestingly enough, this equation
can be written schematically using the diagram below:

Extension of the balance equation
for an incompressible fluid allowing
variations of specific volume with space
and time, but precluding fluctuations
of specific volume

. Pure volume
Interactions L
variation through
between . .
interactions between
volume .
= . + volume fluctuation
fluctuation .
and divergence
and mean .
of the velocity
fields .
fluctuation
deviation

The terms on the right-hand side of Eq. (1) are related to
physical mechanisms associated with solely the fluctua-
tion of specific volume. These terms have been called
deviation terms for they can be considered representative
of the deviation from a situation for which specific
volume would vary, but not fluctuate. Finally, note that
the statistical decomposition of A4 in Eq. (1) may intro-
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duce additional deviation terms when, e.g., it is pro-

portional to the divergence of velocity as is the case in

the budget equation of internal energy (see further).
This formulation is interesting in many regards. It

provides a more general framework for the study of a
broad range of flow configurations in turbulent free
convection since, so far, no simplifications have been
introduced. Physical mechanisms are viewed from a
different perspective in comparison with the classical
approach. In particular, this formulation allows a better
identification of the mechanisms related to volume
variation effects (see also Section 3.2). Some other ad-
vantages of this formulation are worth being put for-
ward immediately:

e The left-hand side of Eq. (1) corresponds to the
nearly incompressible case for which variations of
U are allowed (instead of variations of p in the clas-
sical approach). Interestingly enough, the presence
of U in the left-hand side of Eq. (1) will not introduce
correlations of higher order than in the classical for-
mulation. Consequently, it may be reasonable to pro-
pose models of the statistical correlations involved in
Eq. (1) by applying model structures similar to those
used in the classical formulation.

e All terms on the right-hand side of Eq. (1) are iden-
tically zero when specific volume does not fluctuate
(which a priori is different from does not vary).

e The right-hand side of Eq. (1) allows a distinction be-
tween specific volume fluctuation mechanisms due to

(1) correlations with specific volume fluctuations or
(ii) correlations with the divergence of velocity
fluctuations.

e The terms on the right-hand side of Eq. (1) are ‘new’
in that sense they do not appear explicitly in the vol-
ume formulation. Their physical interpretation how-
ever is clear. One objective of the work presented
here was to estimate the contribution of these terms
in the case of turbulent free convection where they
are usually ignored (especially the correlation with
div(i)).

Eq. (1) must be compared to the equation obtained
by the classical approach that relies on local balance
analysis for elementary volume of fluid:

DY . . 1 .. o .
D + div(Vu) — 4 > div(J) 5 div(J) + VP div(ii).
The equation above represents the same physics as Eq.
(1). Only the way density variation effects are formally
distinguished through this classical formulation does not
exactly coincide with the way specific volume variation
mechanisms are made explicit in the mass formulation.
This is a direct consequence of the fact that
U=1/p#1 /P , among others. Similarly, the leftmost
term on the right-hand side of the equation above in-
troduces a difficulty from the viewpoint of an exper-
imenter. The first-order expansion series required to

make this term tractable, because it is related to p in
instantaneous value, will automatically increase the de-
gree of the resulting correlation. This is not the case with
Eq. (1), as is shown in Section 3.6.

3.2. Hierarchy of terms

Eq. (1) has been written so that, from left to right, a
certain hierarchy is respected regarding the effects of
volume variation. Thus, the left-hand side of Eq. (1)
encompasses terms usually held to be dominant in the
balance equations. These terms are to be associated with
‘macroscopic’ variations of volume. The leftmost term
on the right-hand side expresses couplings between
fluctuations of specific volume and mean local surface
interactions between the selected mass of fluid and the
surrounding matter. The contribution of this coupling to
turbulence production may be noticeable in turbulent
free convection if not dominant in some particular cases.
The term II, which contains only terms whose mean
value is non-zero, puts together the deviation terms
considered, a priori, negligible compared to the other
terms of the budget because they reflect volume fluctu-
ation effects of second order. The rightmost term in IT,
was written last since the coupling with the fluctuation
of specific volume (in the form of the divergence of the
velocity vector) it represents, is usually assumed to play
no significant role in the balance.

The consistency of the hierarchy described above
may be better understood when considering the follow-
ing classes of fluids:

e For an incompressible fluid, i.e., whose density or
specific volume does not vary in space nor in time,
the deviation terms are identically zero. Eq. (1) re-
duces to the generalized transport equation for in-
compressible fluids.

e For weak fluctuations of specific volume, the term
I1, may remain negligible in the balance. Eq. (1)
takes a form close to the Boussinesq formulation
whereby the coupling + div(J) will operate only in
the balance of the transport equation of ¥ and of cor-
relations with i, but will not play any role as regards
the balance of the transport equation of V.

e For strongly compressible flows, I, has to be fully
accounted for in the transport equation of ¥ and,
subsequently, in all transport equations of correla-
tions with the fluctuation .

In the two last cases, one must pay attention to the
term o div(J), which yields a source term proportional
to Oy or i in the transport equations of the variance
and the turbulent flux of i, respectively. The contribu-
tion of those correlations to the balance will be all the
more noticeable as div(J) itself is significant, which is
not something that is obvious to predict.

The contribution of the deviation terms to the bal-
ance of the transport equations for mean momentum,
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internal energy, the variances of temperature and
velocity, and the streamwise turbulent heat flux was
examined. Only part of the relevant results is discussed
in this paper. We give below two applications of Eq. (1)
and the transport equations used for data analysis.

3.3. Application of Eq. (1) to the local transport equation
of momentum

DU

By — &~ Udiv(2) +i- (grad U)+div(iioa)
balance without volume fluctuation
=9 div(2) + f[u (2a)
N, et
deviation
with
i, = 9 div(e) + @(V - if). (2b)

3.4. Application of Eq. (1) to the local transport equation
of internal energy

Cy
%+RTV U+U(V-0—Rad— 9)
+ii - V(C,T) + V - (C,0i)
balance without volume fluctuation

=9(~V -0+ Rad + &) + I, (3a)

deviation

with
Iy =—9(V-§—Rad) — (RT + (R—C,)0)V -ii. (3b)
3.5. Practical transport equations used for data analysis

3.5.1. Momentum
Eq. (2a) yields for mean momentum after averaging

%-ﬁ-dlv( Qi) —g—Udiv(Y) =11, (4a)
Note that buoyancy forces can be made explicit in the
equation above by considering the mean field to deviate
from an arbitrary aerostatic and adiabatic field at rest.
We can thus write for the transport equations of the
mean and fluctuating parts of momentum, respectively:

DU +div(i®a)+ (ﬂ)g — U(div(7)

Dt

However, local specific volume fluctuations may yet play
an identifiable role on the structure of turbulent con-
vection. Buoyant motion of a parcel of fluid, and as-
sociated energy mechanisms, indeed are determined by
the interactions with the immediately surrounding fluid
particles, but not by the ambient fluid state or any ar-
bitrary reference state. Therefore, we chose the mean
temperature and velocity fields themselves as a reference
state instead of any other arbitrary reference field. 2 We
thus used

Dii _ =
S?Jrugrad(U) rdiv(ioi-iod) -

U div(o)

£l

(B ﬁu) +ﬁu - (4b)

CII 53

with

=

y %erlv(ﬁ ®uU).

Ul|

3.5.2. Internal energy
We used for the mean

D(C,T)
Dr
+U(V-0—Rad—®) =T, (5a)

+V - (C,08) + RTV - U

and for the fluctuation
D(C.0)
Dt
+ROV-U+U(V-

+ ii grad(C,T) + div(C, 04 — C,04)
g — Rad)
U-

(Dy +RTV - U —TIy) + 11, — T, (5b)

CH SN

with

3.5.3. Divergence of velocity
The relationships below were subsequently inferred
from the transport equation of internal energy:

c oo (YO e gy g
U= RT< o HROV-0)+ UV -0
—Rad—<15)), (6a)

2 Note that the internal mean fields can still be described in
reference to the external ambient fluid (non-adiabatic) which
can in turn be interpreted as a deviation from an aerostatic and
adiabatic situation.
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- = 1 (D(GT) = -
U= —— . R —
VU RT( Dr +V - (C0i)+ (R-C,)
xeﬁ-mU(vQ—Rad—qs)) (6b)
= o 1 D0 = - =

3.6. Practical considerations

So far, no assumption has been made concerning the
nature of the fluid. Therefore, the approach above is of a
very general scope, and Eq. (1) identically applies to
compressible gas or liquids. We shall now introduce the
simplifying considerations used in the present exper-
imental work.

Air was considered a non-chemically reacting ideal
gas. In turbulent free convection, it can safely be as-
sumed that p/P, the ratio of pressure fluctuations to the
absolute mean pressure, is negligible compared to unity.
Thus, from a first-order Taylor expansion series of
pressure, air specific volume can be linearly related to
the temperature:

1 RT R p RT
U=-=—22—|(1-=)2—, 7

from what we subsequently infer using Reynolds stat-
istical decomposition:

RT RO
==+ =

U=U+v )
P P

(7b)
Thus, in the transport equations, all correlations with
the fluctuation of the inverse of density could be re-
placed with correlations with the temperature fluctua-
tion, which are measurable.

Air was considered to be a Newtonian viscous fluid.
All correlations with fluctuations of the kinematic vis-
cosity v and the thermal diffusivity o were neglected in
the balance equations. However, the means of v and o
were allowed to vary with space consistently with the
temperature range encountered in the experiments.

The Rossby number based on the height of the tunnel
and the mean flow velocity was found to be much
greater than unity so that it was assumed that body
forces reduced to gravity.

Radiation and viscous dissipation of mechanical en-
ergy were neglected in the transport equation of internal
energy.

4. Experimental results

Repeatable flow features were observed from a large
number of experiments. It is the purpose of this paper to
present and discuss the trends that emerged from a series
of tests performed with stable meteorological conditions
on sunny days. The analysis was performed by exam-
ining the streamwise evolution of horizontally averaged
mean values of the statistical quantities involved in the
balance equations, i.e., by looking at the flow as if it was
perfectly homogeneous horizontally. The overbar used
in the following, therefore, denotes both spatial and time
averaging. The terms involving differentiation with re-
spect to y and z thus were zero in average in all budget
equations.

4.1. State of ambient fluid

Grid heating was started early in the morning and
was maintained until the end of turbulence measure-
ments in the tunnel. Approximately, 3 h of heating were
needed for the ambient fluid, and thus the studied mean
flow, to reach a constant or slightly evolutive temporal
variation rate. The ambient fluid could be reasonably
assumed to be at rest. The mean pressure differential
between the building floor and the ceiling was measured
at several locations in the laboratory. It was estimated to
be about 0.1 Pa across the building depth. Considering
that there were no reasons for the vertical profile of
mean pressure to substantially depart from a linear law,
it was assumed that the pressure field was aerostatically
distributed in the laboratory hall. Even though the
thermocouple records clearly indicated a decrease in
the ambient mean temperature with the distance to the
convection tower, horizontal gradients of mean tem-
perature were negligible compared to the relevant ver-
tical gradients so that the ambient field could safely be
considered homogeneously distributed horizontally. The
average vertical gradient of the ambient mean temper-
ature was estimated to be about 1 K/m, representative of
a stable stratification.

4.2. Bulk characteristics of the mean flow

The temporal evolution of the mean temperature
field inside the tower was well correlated with that of
the mean temperature field outside of the tunnel. The
mean temperature vertical gradient was nearly constant
within the investigated region of the tunnel, equal to
—0.3 K/m, thus representative of an unstable thermal
stratification.

Two distinct regions were identified in the flow. The
frontier between these two regions varied from one ex-
periment to another. It was located between 3 and 5 m
downstream of the grid. Although a weak acceleration,
the mean flow velocity remained nearly constant in the
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Fig. 2. Vertical profile of mean velocity longitudinal compo-
nent: (0J) present experiments; (O) what would have been

obtained if V- U = = —.
T dt

lower region. From 3 m downstream of the heating grid,
a slight but noticeable decrease in the mean flow velocity
was observed. The present mean flow velocity profile
was compared to the relevant profile we would have
obtained for an incompressible fluid flowing in an
aerostatic and adiabatic atmosphere, taking for initial
velocity the one measured at 2 m downstream of the grid
in the present experiment (Fig. 2).

The unequivocal discrepancy between the two pro-
files puts forward the necessity to use a compressible
form of the Navier-Stokes equations in the present case.

4.3. Balance of terms in the transport equation of internal
energy

Prior to analysis, it must be noted that the term
RTYV - U on the left-hand side of Eq. (5a) is to be con-
sidered an additional source/sink term due to variations
of mean specific volume as a consequence of mass
conservation. It does not appear in the transport equa-
tion of internal energy for an incompressible fluid. It
actually replaces the pressure term present in the stan-
dard formulation of the transport equation of internal
energy. It may be regarded as the homologue of the
gravity term in the momentum equation. However, the
role it plays in the transport equation of internal energy
is not comparable to that played by the gravity term in
the transport equation of mean momentum, as will be
shown.

In Eq. (5a), all quantities except (C, —R)OV -ii
coming from IT; were measured directly or estimated.
Analysis of experimental results showed that the trans-
port equation of mean internal energy finally reduced to

Eq. (8) where we only kept the dominant terms and the
unknown contribution of the non-measurable terms.
The latter include the diffusion term and the dominant
part of the deviation term:

TV(T) +V - (i) — 0V - &

R - -
~ T ). (8)

<y
Qi

14

+0

Two cases may here be considered and examined sep-

arately:

e Diffusion reduces to d(6u)/x (the only component
that could be measured). The value of O(0u)/dx is
much lower than transport by mean flow. Therefore,
we are led to suggest

> y—1\=2 = 1 =
HV-u%( )TV~U—( )UV(T). 9)
y—2 y—2

Due to the high value of V.U in the present case,
volume fluctuation effects that reflects the correlation
O0divii turn out to play a key role as regards
couplings between the temperature and velocity mean
fields (Fig. 3).

e Making the hypothesis customarily used for this kind
of flow, namely, that 7 V- Uis equal to zero, then the
transport equation of mean internal energy can only
be balanced if we admit that lateral diffusion
(00v/dy + 00w/0z) is constrained by the semi-con-
finement of the investigated flow, and compensates
for the effects of volume fluctuation.

In both cases, our results support earlier observations
in turbulent free convection, and more precisely in
plumes. They additionally tend to give evidence that

2.0

o.o-ggmmm
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Fig. 3. Dominant terms in the transport equation of internal

energy: (O) 7%2)5 NV(T); (O) — %T@ T (0) 0V -iiz.



M. Pavageau, C. Rey | International Journal of Heat and Mass Transfer 45 (2002) 181-192 189

effects of volume variation contribute to the mechanisms
of energy conservation. Therefore, the corresponding
terms should be accounted for in the relevant balance
equation independently of which one of the two hy-
potheses above actually applies.

Furthermore, experimental results seem to indicate
that here effects of volume fluctuation tend to offset the
effects of mean volume variation. This would suggest
that specific volume could not vary without fluctuating.
For an incompressible fluid, these two contributions
should compensate for each other exactly. In other
words, one could reformulate the Boussinesq approxi-
mation by saying it consists in assuming that effects of
mean volume variation and volume fluctuation cancel
each other out exactly.

4.4. Balance of terms in the transport equation of mean
momentum

Analysis of experimental results showed that the
transport equation of mean momentum reduced to Eq.
(10) below after projection along the x-axis. All viscous

terms in f],,|x including the term proportional to 0V - i
were either measured or estimated. They could be ne-
glected in the balance compared to the known dominant
terms of the momentum equation. Two unknown
quantities remained in ﬁu|x. They were accounted for in
the analysis for lack of information about their possible
contribution to the balance:

_oU Oum

RT 0P R Op —=—

i ekl g 1
U@x+6x +g+P o Peax+uv i (10)
—_— N——

D, . unknown E“ I

The term I7, «|, was expressed as a function of measurable
terms by using existing links between the statistical
modes of Reynolds and Favre [4]. Its contribution to the
balance of the transport equation of mean momentum
was found negligible. The gravity term formed the
dominant contribution to the balance equation of mo-
mentum where it actually compensated almost com-
pletely for the pressure term. Eq. (10) could therefore be
written in the form of Eq. (11) in which we reintroduced
the state of the ambient fluid as a reference state:

(T-T,) N @ (P —P,)
T, P, Ox

IR

B.|, — ¢ ], =0. (11)
However, even though the deviation terms were found
to play a minor, if not negligible, role in the balance of
the transport equation of mean momentum, note that

the individual contribution of —(R/P)(00p/ox) and

uV - i in ﬁu |, could not be estimated through the present
approach. The hypothesis that these two terms may be
significant individually cannot be turned down defi-

nitely. Therefore, it could only be concluded that the
role played by volume fluctuation effects is transparent
in the transport equation of mean momentum in the
form it was treated here. We eventually ended up with
the classical formulation of the transport equation of
mean momentum obtained by application of the Bous-
sinesq approximation, consistently with earlier obser-
vations in the atmosphere.

Finally, it could be verified that the vertical distri-
bution of pressure inside the tunnel followed the law of
hydrostatic.

4.5. Balance of terms in the transport equation of the
variance of temperature

The transport equation of the variance of tempera-
ture was written as

D(66 R—> = U—= [
00) 4 2 R G5 . T 42 0% G+ 29(T) - 0
Dt Cy C, ———
N——" _2,_/ ——— 4

__ =
U — =~
5 6 7 8

2 0T, - 005 -4 12

+a 0— 0oV -u. (12)

10
9

Prior to analysis, it is worth noting that Eq. (12) re-

veals supplementary terms of production of ?, namely,
terms 6-8, in the form of self production/destruction
through coupling with the volume fluctuation repre-

sented by 0. Terms 2 and 7 on the left-hand side and
right-hand side of Eq. (12), respectively, are identical.
However, they do not account for the same physical
mechanisms. Term 2 proceeds from a conversion of the
pressure term. It represents production by interaction
with variations of mean specific volume. This term is
customarily neglected in the study of atmospheric flows
where the hypothesis of quasi-incompressibility is as-
sociated with an assumption of quasi-nullity of the
divergence of mean velocity. Furthermore, interestingly
enough the sum of terms 6 —8 between brackets can
easily be estimated as it actually stems from the
transport equation of internal energy. In contrast, it
would not be so easy to estimate term 8 individually
when canceling out terms 2 and 7.

Experimental results showed that the sum of terms 6—
8 was fully negligible in the balance. Thus, it is inter-
esting to note that these terms play a role fundamentally
different from that played by their counterpart, namely,
the buoyancy term, in the balance of the variance of
velocity fluctuations (see further).

After estimation of the dominant terms, Eq. (12) fi-
nally was reduced to
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We did not observe the streamwise decay of the variance
of temperature typical of grid turbulence in forced
convection. Instead, an increase in 00 was noticed
starting at 4 m downstream of the grid.

Fig. 4 shows that convection does not balance the
sum (production — dissipation — diffusion). Therefore, it
is necessary to account for the contribution of the de-
viation terms to close the budget. The contribution of
the deviation was deduced as residual from the imbal-
ance. This term is positive, which indicates that relevant
effects contribute to the production of turbulent energy.
Consistently enough, these effects are most significant at
2 m downstream of the grids in a region close to the
origin of the flow.

Furthermore, results suggest that, whereas produc-
tion of turbulent energy due to volume fluctuation is
commonly considered to be of second order, it here
prevails over ‘classical’ production by mean gradients
(Fig. 5). This remains to some extent consistent with the
approach chosen here since this flow was designed so as
to minimize production by mean gradients compared to
production by buoyancy effects.

It must finally be noticed that the order of magnitude
of the overall contribution of the deviation terms is de-
termined mainly by the rather large values of the dissi-

0.2
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0.0 EI’/E/E ==t
-0.14
O Convection (a)
-0.2 Lo Diffus.(e)+Dissip.(c)-Prod (b+d)
] L] Imbalance
-0.3 4
A Dissipation (c)
-0.4 T T T T

1 2 3 4 5 6 7
Downstream distance from the grid (m)

Fig. 4. Dominant terms in the transport equation of the tem-
perature variance.
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Fig. 5. Ratio of production of turbulent energy by volume
fluctuation to ‘classical’ production by mean gradients:
(3 =29)00V -ii — 2(y — )TOV - ii

—2%90% —20us

©)

pation term whose estimation must be done carefully, as
was discussed earlier (Fig. 4).

4.6. Balance of terms in the transport equation of the
variance of velocity fluctuations

The transport equation of the mean square fluctua-
tion of velocity is given by Eq. (14) after projection
along the x-direction:

Duui .— Ooy Ouuuy .0U

— —2U 2—
Dt " Oxy + Oxy + Oxy itk

——
1

Ju [ = =
=2= Dulx + g - HM'x
Ul " ——
5 6 7
—uu@~z‘i+2uﬁu|x. (14)
8 ;
9

Recall that if Eq. (14) had been written in the framework
of the Boussinesq approximation, the right-hand side
would reduce to the buoyancy term g@/ T, with T, a
reference temperature, usually of an adiabatic at-
mosphere.

Experimental results put forward an increase in the
variance of the velocity fluctuations with the distance
from the grids in contrast to what is usually observed for
grid turbulence in forced convection.



M. Pavageau, C. Rey | International Journal of Heat and Mass Transfer 45 (2002) 181-192 191

0.003

0.002 Advection (1)

Dissipation (Part of (2))
Buoyancy (5)+(6)+(7)

0.001 4
Prod. by mean gradient (-4)

Diff.+Dissip.-Prod.-Buoy.

® 4 > O ¢ O

Imbalance

-0.001 ———————
1 2 3 4 5 6 7

Downstream distance from the grid (m)

Fig. 6. Balance of terms in the transport equation of the
velocity variance.

The sum of terms 5-7 was equal to g, as was shown in
the analysis of the transport equation of mean mo-
mentum. Fig. 6 reveals that, as was expected, buoyancy
effects form the major contribution to production of
turbulent kinetic energy in the lower flow region where
the flow is still extremely sensitive to initial conditions.
Production by mean gradient increases with downwind
distance from the grids, and is of the same order of
magnitude as production by buoyancy at the highest
measurement section. This is due mainly to the high
values of the mean velocity gradient in the upper flow
region, as a result of volume fluctuations by coupling
with interactions at the upper flow boundaries, as was
shown above.

Diffusion by turbulence (term 3) was constant across
the investigated flow region. It was about 1-2 orders of
magnitude smaller in order of magnitude than the ad-
vection term. This triple correlation in the end contrib-
uted little to the balance.

Dissipation ¢, was the dominant term. It did not
balance the total production of turbulent energy by
buoyancy and mean gradient in the lower region of the
flow while dissipation and production were approxi-
mately evenly balanced from 4 m onwards as production
by mean gradient increased. Therefore, the streamwise
increase in the variance of the velocity fluctuation had to
be related to additional mechanisms of production.
Those could be due only to pressure and volume fluc-
tuation effects (sum of terms 2, 8 and 9 in Eq. (14)).
Analysis of the dominant terms showed that this sum
reduced to

term 2 + term 8 + term 9

R O —=- ,RT Op
~2—0u— U —2—=u—.
PGuax—i—uuV u 7 "%

Interestingly enough, assuming u0p/0x forms the main
contribution to u,0p/0x;, it comes from the continuity
equation (see [4])

term 2 + term 8§ + term 9

= —Z%Hu% +uuN - i+ 2RTYV - U + Z%Ug.
The relation above puts forward the origin of the high
values of term 2 + term 8 + term 9, namely, the diver-
gence of the mean velocity vector.

The pressure correlations in the sum above were
modelled using the model of Launder et al. [5] for in-
compressible fluids extended by Ramirez Leon [6] and
Ramirez Leon et al. [7] to quasi-compressible flows.
After estimation of the dominant terms, Eq. (14) finally
reduced to

__Quu Ou 2 Quuu U
Ve =278 3% o iy
g 2— —oU
142 (m 252 2 9Y
—0—{ 1,42(1414 3K>+0,64K ax}
0 10T
+ {O,4a(ukuku) — 0,4ukuku? a}
+uuV - i, (15)

where uuV - ii remained the only unknown. The overall
contribution of the last three terms on the right-hand
side of Eq. (15) was inferred from the imbalance.

The pressure—diffusion was found negligible in the
balance. The contribution of the pressure—strain term to
the balance was significant close to the grids vanishing
further downstream from the grid. Inversely, the con-
tribution of volume fluctuation effects tended to prevail
in the upper part of the flow (Fig. 7). Therefore, though
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Fig. 7. Comparison of the contribution of pressure and volume
fluctuation-related correlations in the balance of wu: (O)

pressure strain; (&) pressure diffusion; (O) wV - .
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we could not quantify the individual contribution of

uﬁu\x in Eq. (14), results suggest that volume and
pressure fluctuation effects contribute equally to the
balance of the velocity variance transport equation.

5. Conclusion

Experiments on free turbulent convection developing
in an open vertical tunnel were conducted. Results were
analyzed in the framework of a set of equations without
too restrictive assumptions regarding specific volume
variations. Effects of volume variation were investigated.
Non-isovolume mechanisms were found to play a no-
ticeable role in the flow configuration investigated here
whereas they are considered to be second-order effects in
most usual models. Relevant terms in the equations of
turbulence appeared to be strongly related to the mean
velocity divergence. Therefore, great care should be ex-
ercised in the experimental determination of this quan-
tity. The internal energy equation could be balanced
only by taking into consideration 0 div i, the correlation
between the temperature fluctuation and the divergence
of the fluctuating velocity. However, volume variation
and fluctuation effects compensate for each other so that
their influence on the mean temperature field as well as
on the mean velocity field is, in the end, weak. Although
effects of volume variation actively contribute to the
interactions between the mean temperature and velocity
fields, thus determining the evolution and structure of
these two fields, the mean flow seems to behave similarly
to a situation of the Boussinesq type. Physical mech-
anisms associated with volume and pressure fluctuation
seem to play a role of equal weight in the transport of
turbulent kinetic energy. Therefore, this suggest that the
physical analysis underlying commonly used closures
where all couplings with the fluctuation of specific vol-
ume are ignored, if not neglected, should perhaps be
revised. Experimental results tend to show as well that
effects of volume fluctuation play a noticeable role with
respect to the physical mechanisms driving the turbulent
temperature field. The estimation of the relevant terms is
shown to be strongly dependent of the estimation of &.

This work might sound frustrating since as a result of
our inquiry we perhaps raised more questions than we
have answered even though the results presented here
remain consistent with earlier observations in the at-

mosphere. The work achieved here revives the debate
about dilatation effects in turbulent free convection and,
more generally, for weakly compressible flows. There is
considerably greater need for additional data to verify
the tentative conclusions we reached here. Accurate
measurements of (@ - U), among others, appear to pose
serious experimental challenges. This point should de-
serve attention in future works. We hope finally that, in
this work, one will find incentives to examination of the
degree of applicability of customarily used models for
turbulent free convection.
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